资源类型

期刊论文 1554

会议视频 87

会议专题 1

年份

2024 1

2023 95

2022 143

2021 145

2020 103

2019 84

2018 94

2017 93

2016 73

2015 90

2014 62

2013 54

2012 47

2011 56

2010 74

2009 52

2008 44

2007 61

2006 53

2005 38

展开 ︾

关键词

能源 22

指标体系 12

智能制造 11

系统工程 10

海上风电场 9

开放的复杂巨系统 7

系统集成 7

钱学森 7

可持续发展 6

技术体系 6

钢结构 6

海上风电 5

电力系统 5

系统科学 5

2022全球十大工程成就 4

仿真 4

农业科学 4

发展战略 4

战略性新兴产业 4

展开 ︾

检索范围:

排序: 展示方式:

A comprehensive review of wind power based power system frequency regulation

《能源前沿(英文)》 2023年 第17卷 第5期   页码 611-634 doi: 10.1007/s11708-023-0876-6

摘要: Wind power (WP) is considered as one of the main renewable energy sources (RESs) for future low-carbon and high-cost-efficient power system. However, its low inertia characteristic may threaten the system frequency stability of the power system with a high penetration of WP generation. Thus, the capability of WP participating in the system frequency regulation has become a research hotspot. In this paper, the impact of WP on power system frequency stability is initially presented. In addition, various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine (WT) level to the wind farm (WF) level, and their performances are compared in terms of operating principles and practical applications. The pros and cons of each control strategy are also discussed. Moreover, the WP combing with energy storage system (ESS) for system frequency regulation is explored. Furthermore, the prospects, future challenges, and solutions of WP participating in power system frequency regulation are summarized.

关键词: frequency regulation strategies     wind turbine generators     grid-forming control     model predictive control     energy storage system    

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2012年 第6卷 第2期   页码 184-192 doi: 10.1007/s11708-012-0185-y

摘要: Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.

关键词: doubly fed induction generator (DFIG)     load frequency control     inertial control     wind energy conversion system (WECS)    

A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT

Satish KUMAR,Ashwani KUMAR,N. K. SHARMA

《能源前沿(英文)》 2020年 第14卷 第2期   页码 410-418 doi: 10.1007/s11708-016-0440-8

摘要: The maximum demand of power utilization is increasing exponentially from base load to peak load in day to day life. This power demand may be either industrial usage or household applications. To meet this high maximum power demand by the consumer, one of the options is the integration of renewable energy resources with conventional power generation methods. In the present scenario, wind energy system is one of the methods to generate power in connection with the conventional power systems. When the load on the conventional grid system increases, various bus voltages of the system tend to decrease, causing serious voltage drop or voltage instability within the system. In view of this, identification of weak buses within the system has become necessary. This paper presents the line indices method to identify these weak buses, so that some corrective action may be taken to compensate for this drop in voltage. An attempt has been made to compensate these drops in voltages by integration of renewable energy systems. The wind energy system at one of the bus in the test system is integrated and the performance of the system is verified by calculating the power flow (PF) using the power system analysis tool box (PSAT) and line indices of the integrated test system. The PF and load flow results are used to calculate line indices for the IEEE-14 bus test system which is simulated on PSAT.

关键词: voltage stability     line indices     power system analysis tool box (PSAT)     wind system     line loading     power flow (PF)    

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

《能源前沿(英文)》 2016年 第10卷 第2期   页码 143-154 doi: 10.1007/s11708-016-0402-1

摘要: The current paper talks about the variable speed wind turbine generation system (WTGS). So, the WTGS is equipped with a doubly-fed induction generator (DFIG) and two bidirectional converters in the rotor open circuit. A vector control (VC) of the rotor side converter (RSC) offers independent regulation of the stator active and reactive power and the optimal rotational speed tracking in the power maximization operating mode. A VC scheme for the grid-side converter (GSC) allows an independent regulation of the active and reactive power to exchange with the grid and sinusoidal supply currents and keeps the DC-link voltage constant. A fuzzy inference system (FIS) is adopted as an alternative of the conventional proportional and integral (PI) controller to reject some uncertainties or disturbance. The performances have been verified using the Matlab/Simulink software.

关键词: wind turbine generation system (WTGS)     doubly-fed induction generator (DFIG)     maximum power point tracking (MPPT)     vector control (VC)     fuzzy logic controller (FLC)    

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 131-148 doi: 10.1007/s11708-017-0446-x

摘要: Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

关键词: photovoltaic     wind turbine     hybrid system     fuzzy logic controller     genetic algorithm     RBFNSM    

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 205-210 doi: 10.1007/s11708-009-0073-2

摘要: Owing to the stochastic characteristic of natural wind speed, the output fluctuation of wind farm has a negative impact on power grid when a large-scale wind farm is connected to a power grid. It is very difficult to overcome this impact only by wind farm itself. A novel power system called wind-gas turbine hybrid energy system was discussed, and the framework design of this hybrid energy system was presented in detail in this paper. The hybrid energy system combines wind farm with several small gas turbine power plants to form an integrated power station to provide a relatively firm output power. The small gas turbine power plant has such special advantages as fast start-up, shutdown, and quick load regulation to fit the requirement of the hybrid energy system. Therefore, the hybrid energy system uses the output from the small gas turbine power plants to compensate for the output fluctuation from the wind farm for the firm output from the whole power system. To put this hybrid energy system into practice, the framework must be designed first. The capacity of the wind farm is chosen according to the capacity and units of small gas turbine power plants, load requirement from power grid, and local wind energy resource distribution. Finally, a framework design case of hybrid energy system was suggested according to typical wind energy resource in Xinjiang Autonomous Region in China.

关键词: framework design     hybrid energy system     wind farm     gas turbine power plants    

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2013年 第7卷 第2期   页码 245-254 doi: 10.1007/s11708-012-0218-6

摘要: This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.

关键词: frequency regulation     fuzzy controller     de-regulated power system     doubly fed induction generator (DFIG)     bilateral contract    

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 367-376 doi: 10.1007/s11465-017-0429-y

摘要:

A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

关键词: wind turbine generator     DFIG     drive train system     hierarchical parameter estimation method     trajectory sensitivity technique    

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using

Aeidapu MAHESH, Kanwarjit Singh SANDHU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 139-151 doi: 10.1007/s11708-017-0484-4

摘要: In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery’s state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.

关键词: PV-wind-battery hybrid system     size optimization     genetic algorithm    

A solution to stochastic unit commitment problem for a wind-thermal system coordination

B. SARAVANAN,Shreya MISHRA,Debrupa NAG

《能源前沿(英文)》 2014年 第8卷 第2期   页码 192-200 doi: 10.1007/s11708-014-0306-x

摘要: Unit commitment (UC) problem is one of the most important decision making problems in power system. In this paper the UC problem is solved by considering it as a real time problem by adding stochasticity in the generation side because of wind-thermal co-ordination system as well as stochasticity in the load side by incorporating the randomness of the load. The most important issue that needs to be addressed is the achievement of an economic unit commitment solution after solving UC as a real time problem. This paper proposes a hybrid approach to solve the stochastic unit commitment problem considering the volatile nature of wind and formulating the UC problem as a chance constrained problem in which the load is met with high probability over the entire time period.

关键词: unit commitment (UC)     randomness     wind generation     univariate     chance constrained    

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

《能源前沿(英文)》 2015年 第9卷 第1期   页码 7-21 doi: 10.1007/s11708-014-0338-2

摘要: Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.

关键词: two area power system     automatic generation control     wind power generating system (WPGS)     deregulated environment     fuzzy logic controller (FLC)    

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

《能源前沿(英文)》 2015年 第9卷 第3期   页码 259-271 doi: 10.1007/s11708-015-0367-5

摘要: In most isolated sites situated in south Algeria, the diesel generators are the major source of electrical energy. Indeed, the power supply of these remote regions still poses order problems (technical, economical and ecological). The electricity produced with the help of diesel generators is very expensive and responsible for CO emission. These isolated sites have significant wind energy potential. Hence, the use of twinning wind-diesel is widely recommended, especially to reduce operating deficits. The objective of this paper is to study the global modeling of a hybrid system which compounds wind turbine generator, diesel generator and storage system. This model is based on the control strategy to optimize the functioning of the hybrid system and to consolidate the gains to provide proper management of energy sources (wind, diesel, battery) depending on the load curve of the proposed site. The management is controlled by a controller which ensures the opening/closing of different power switches according to meteorological conditions (wind speed, air mass, temperature, etc).

关键词: wind-diesel     storage system     isolated site     management     simulation    

Tianrun Xia County phase III 99.5 MW wind power engineering technology and green innovation

Xiaobo WANG

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 131-137 doi: 10.1007/s42524-019-0012-9

摘要:

关键词: low carbon design     green standard system     environmental protection     sustainable development     Tianrun Sijiao Town wind farm    

Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration

B. TUDU, K. K. MANDAL, N. CHAKRABORTY

《能源前沿(英文)》 2019年 第13卷 第2期   页码 269-283 doi: 10.1007/s11708-018-0573-z

摘要: The present paper has disseminated the design approach, project implementation, and economics of a nano-grid system. The deployment of the system is envisioned to acculturate the renewable technology into Indian society by field-on-laboratory demonstration (FOLD) and “bridge the gaps between research, development, and implementation.” The system consists of a solar photovoltaic (PV) (2.4 kWp), a wind turbine (3.2 kWp), and a battery bank (400 Ah). Initially, a prefeasibility study is conducted using the well-established HOMER (hybrid optimization model for electric renewable) software developed by the National Renewable Energy Laboratory (NREL), USA. The feasibility study indicates that the optimal capacity for the nano-grid system consists of a 2.16 kWp solar PV, a 3 kWp wind turbine, a 1.44 kW inverter, and a 24 kWh battery bank. The total net present cost (TNPC) and cost of energy (COE) of the system are US$20789.85 and US$0.673/kWh, respectively. However, the hybrid system consisting of a 2.4 kWp of solar PV, a 3.2 kWp of wind turbine, a 3 kVA of inverter, and a 400 Ah of battery bank has been installed due to unavailability of system components of desired values and to enhance the reliability of the system. The TNPC and COE of the system installed are found to be US$20073.63 and US$0.635/kWh, respectively and both costs are largely influenced by battery cost. Besides, this paper has illustrated the installation details of each component as well as of the system. Moreover, it has discussed the detailed cost breakup of the system. Furthermore, the performance of the system has been investigated and validated with the simulation results. It is observed that the power generated from the PV system is quite significant and is almost uniform over the year. Contrary to this, a trivial wind velocity prevails over the year apart from the month of April, May, and June, so does the power yield. This research demonstration provides a pathway for future planning of scaled-up hybrid energy systems or microgrid in this region of India or regions of similar topography.

关键词: photovoltaic (PV)     wind     battery     nano-grid     hybrid optimization model for electric renewable (HOMER)     field-on-lab demonstration (FOLD)    

A novel method for reliability and risk evaluation of wind energy conversion systems considering wind

Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI

《能源前沿(英文)》 2016年 第10卷 第1期   页码 46-56 doi: 10.1007/s11708-015-0384-4

摘要: This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors’ knowledge, wind speed and wind turbine generator outage have not been addressed simultaneously. In this paper, a novel methodology based on the Weibull-Markov method is proposed for evaluating the probabilistic reliability of the bulk electric power systems, including DFIG wind turbines, considering wind speed and wind turbine generator outage. The proposed model is presented in terms of appropriate wind speed modeling as well as capacity outage probability table (COPT), considering component failures of the wind turbine generators. Based on the proposed method, the COPT of the wind farm has been developed and utilized on the IEEE RBTS to estimate the well-known reliability and sensitive indices. The simulation results reveal the importance of inclusion of wind turbine generator outage as well as wind speed in the reliability assessment of the wind farms. Moreover, the proposed method reduces the complexity of using analytical methods and provides an accurate reliability model for the wind turbines. Furthermore, several case studies are considered to demonstrate the effectiveness of the proposed method in practical applications.

关键词: doubly-fed induction generator (DFIG)     composite system adequacy assessment     wind speed correlation    

标题 作者 时间 类型 操作

A comprehensive review of wind power based power system frequency regulation

期刊论文

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT

Satish KUMAR,Ashwani KUMAR,N. K. SHARMA

期刊论文

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

期刊论文

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

期刊论文

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

期刊论文

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

期刊论文

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using

Aeidapu MAHESH, Kanwarjit Singh SANDHU

期刊论文

A solution to stochastic unit commitment problem for a wind-thermal system coordination

B. SARAVANAN,Shreya MISHRA,Debrupa NAG

期刊论文

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

期刊论文

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

期刊论文

Tianrun Xia County phase III 99.5 MW wind power engineering technology and green innovation

Xiaobo WANG

期刊论文

Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration

B. TUDU, K. K. MANDAL, N. CHAKRABORTY

期刊论文

A novel method for reliability and risk evaluation of wind energy conversion systems considering wind

Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI

期刊论文